博客
关于我
Keras自定义网络进行十分类图像识别
阅读量:262 次
发布时间:2019-03-01

本文共 4177 字,大约阅读时间需要 13 分钟。

import osimport numpy as npimport tensorflow as tfimport randomimport seaborn as snsimport matplotlib.pyplot as pltfrom keras.models import Sequential, Modelfrom keras.layers import Dense, Dropout, Activation, Flatten, Inputfrom keras.layers.convolutional import Conv2D, MaxPooling2Dfrom keras.optimizers import RMSprop, Adam, SGDfrom keras.preprocessing import imagefrom keras.preprocessing.image import ImageDataGeneratorfrom keras.utils import np_utilsfrom sklearn.model_selection import train_test_split

图片预处理

def read_and_process_image(data_dir,width=32, height=32, channels=3, preprocess=False):        train_classes= [data_dir +  i for i in os.listdir(data_dir) ]    train_images = []    for train_class in train_classes:        train_images= train_images + [train_class + "/" + i for i in os.listdir(train_class)]        random.shuffle(train_images)        def read_image(file_path, preprocess):        img = image.load_img(file_path, target_size=(height, width))        x = image.img_to_array(img)        x = np.expand_dims(x, axis=0)        # if preprocess:            # x = preprocess_input(x)        return x        def prep_data(images, proprocess):        count = len(images)        data = np.ndarray((count, height, width, channels), dtype = np.float32)                for i, image_file in enumerate(images):            image = read_image(image_file, preprocess)            data[i] = image                return data        def read_labels(file_path):        labels = []        for i in file_path:            if 'airplane' in i:                label = 0            elif 'automobile' in i:                label = 1            elif 'bird' in i:                label = 2            elif 'cat' in i:                label = 3            elif 'deer' in i:                label = 4            elif 'dog' in i:                label = 5            elif 'frog' in i:                label = 6            elif 'horse' in i:                label = 7            elif 'ship' in i:                label = 8            elif 'truck' in i:                label = 9            labels.append(label)                return labels        X = prep_data(train_images, preprocess)    labels = read_labels(train_images)        assert X.shape[0] == len(labels)        print("Train shape: {}".format(X.shape))        return X, labels

读取训练集,以及测试集

# 读取训练集图片WIDTH = 32HEIGHT = 32CHANNELS = 3X, y = read_and_process_image('D:/Python Project/cifar-10/train/',width=WIDTH, height=HEIGHT, channels=CHANNELS)# 读取测试集图片WIDTH = 32HEIGHT = 32CHANNELS = 3test_X, test_y = read_and_process_image('D:/Python Project/cifar-10/test/',width=WIDTH, height=HEIGHT, channels=CHANNELS)# 统计ysns.countplot(y)# 统计ysns.countplot(test_y)

one-hot编码

train_y = np_utils.to_categorical(y)test_y = np_utils.to_categorical(test_y)

显示图片

# 显示图片def show_picture(X, idx):    plt.figure(figsize=(10,5), frameon=True)    img = X[idx,:,:,::-1]    img = img/255    plt.imshow(img)    plt.show()for idx in range(0,3):    show_picture(X, idx)

定义模型

num_classes=10model = Sequential()model.add(Conv2D(32 ,3 ,input_shape=(HEIGHT,WIDTH,CHANNELS),activation='relu',padding='same'))model.add(Conv2D(32 ,3 ,activation='relu',padding='same'))model.add(MaxPooling2D(pool_size=2))model.add(Conv2D(64 ,3 ,activation='relu',padding='same'))model.add(Conv2D(64 ,3 ,activation='relu',padding='same'))model.add(MaxPooling2D(pool_size=2))model.add(Conv2D(128 ,3 ,activation='relu',padding='same'))model.add(Conv2D(128 ,3 ,activation='relu',padding='same'))model.add(MaxPooling2D(pool_size=2))model.add(Conv2D(256 ,3 ,activation='relu',padding='same'))model.add(Conv2D(256 ,3 ,activation='relu',padding='same'))model.add(MaxPooling2D(pool_size=2))model.add(Flatten())model.add(Dense(256, activation='relu'))model.add(Dropout(0.5))model.add(Dense(256, activation='relu'))model.add(Dropout(0.5))model.add(Dense(num_classes, activation='softmax'))model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])model.summary()

训练模型

history = model.fit(X,train_y, validation_data=(test_X, test_y),epochs=20,batch_size=100,verbose=True)score = model.evaluate(test_X, test_y, verbose=0)print("Large CNN Error: %.2f%%" %(100-score[1]*100))

 

转载地址:http://kshv.baihongyu.com/

你可能感兴趣的文章
MySQL 日期时间类型的选择
查看>>
Mysql 时间操作(当天,昨天,7天,30天,半年,全年,季度)
查看>>
MySQL 是如何加锁的?
查看>>
MySQL 是怎样运行的 - InnoDB数据页结构
查看>>
mysql 更新子表_mysql 在update中实现子查询的方式
查看>>
MySQL 有什么优点?
查看>>
mysql 权限整理记录
查看>>
mysql 权限登录问题:ERROR 1045 (28000): Access denied for user ‘root‘@‘localhost‘ (using password: YES)
查看>>
MYSQL 查看最大连接数和修改最大连接数
查看>>
MySQL 查看有哪些表
查看>>
mysql 查看锁_阿里/美团/字节面试官必问的Mysql锁机制,你真的明白吗
查看>>
MySql 查询以逗号分隔的字符串的方法(正则)
查看>>
MySQL 查询优化:提速查询效率的13大秘籍(避免使用SELECT 、分页查询的优化、合理使用连接、子查询的优化)(上)
查看>>
mysql 查询,正数降序排序,负数升序排序
查看>>
MySQL 树形结构 根据指定节点 获取其下属的所有子节点(包含路径上的枝干节点和叶子节点)...
查看>>
mysql 死锁 Deadlock found when trying to get lock; try restarting transaction
查看>>
mysql 死锁(先delete 后insert)日志分析
查看>>
MySQL 死锁了,怎么办?
查看>>
MySQL 深度分页性能急剧下降,该如何优化?
查看>>
MySQL 深度分页性能急剧下降,该如何优化?
查看>>