博客
关于我
Keras自定义网络进行十分类图像识别
阅读量:262 次
发布时间:2019-03-01

本文共 4177 字,大约阅读时间需要 13 分钟。

import osimport numpy as npimport tensorflow as tfimport randomimport seaborn as snsimport matplotlib.pyplot as pltfrom keras.models import Sequential, Modelfrom keras.layers import Dense, Dropout, Activation, Flatten, Inputfrom keras.layers.convolutional import Conv2D, MaxPooling2Dfrom keras.optimizers import RMSprop, Adam, SGDfrom keras.preprocessing import imagefrom keras.preprocessing.image import ImageDataGeneratorfrom keras.utils import np_utilsfrom sklearn.model_selection import train_test_split

图片预处理

def read_and_process_image(data_dir,width=32, height=32, channels=3, preprocess=False):        train_classes= [data_dir +  i for i in os.listdir(data_dir) ]    train_images = []    for train_class in train_classes:        train_images= train_images + [train_class + "/" + i for i in os.listdir(train_class)]        random.shuffle(train_images)        def read_image(file_path, preprocess):        img = image.load_img(file_path, target_size=(height, width))        x = image.img_to_array(img)        x = np.expand_dims(x, axis=0)        # if preprocess:            # x = preprocess_input(x)        return x        def prep_data(images, proprocess):        count = len(images)        data = np.ndarray((count, height, width, channels), dtype = np.float32)                for i, image_file in enumerate(images):            image = read_image(image_file, preprocess)            data[i] = image                return data        def read_labels(file_path):        labels = []        for i in file_path:            if 'airplane' in i:                label = 0            elif 'automobile' in i:                label = 1            elif 'bird' in i:                label = 2            elif 'cat' in i:                label = 3            elif 'deer' in i:                label = 4            elif 'dog' in i:                label = 5            elif 'frog' in i:                label = 6            elif 'horse' in i:                label = 7            elif 'ship' in i:                label = 8            elif 'truck' in i:                label = 9            labels.append(label)                return labels        X = prep_data(train_images, preprocess)    labels = read_labels(train_images)        assert X.shape[0] == len(labels)        print("Train shape: {}".format(X.shape))        return X, labels

读取训练集,以及测试集

# 读取训练集图片WIDTH = 32HEIGHT = 32CHANNELS = 3X, y = read_and_process_image('D:/Python Project/cifar-10/train/',width=WIDTH, height=HEIGHT, channels=CHANNELS)# 读取测试集图片WIDTH = 32HEIGHT = 32CHANNELS = 3test_X, test_y = read_and_process_image('D:/Python Project/cifar-10/test/',width=WIDTH, height=HEIGHT, channels=CHANNELS)# 统计ysns.countplot(y)# 统计ysns.countplot(test_y)

one-hot编码

train_y = np_utils.to_categorical(y)test_y = np_utils.to_categorical(test_y)

显示图片

# 显示图片def show_picture(X, idx):    plt.figure(figsize=(10,5), frameon=True)    img = X[idx,:,:,::-1]    img = img/255    plt.imshow(img)    plt.show()for idx in range(0,3):    show_picture(X, idx)

定义模型

num_classes=10model = Sequential()model.add(Conv2D(32 ,3 ,input_shape=(HEIGHT,WIDTH,CHANNELS),activation='relu',padding='same'))model.add(Conv2D(32 ,3 ,activation='relu',padding='same'))model.add(MaxPooling2D(pool_size=2))model.add(Conv2D(64 ,3 ,activation='relu',padding='same'))model.add(Conv2D(64 ,3 ,activation='relu',padding='same'))model.add(MaxPooling2D(pool_size=2))model.add(Conv2D(128 ,3 ,activation='relu',padding='same'))model.add(Conv2D(128 ,3 ,activation='relu',padding='same'))model.add(MaxPooling2D(pool_size=2))model.add(Conv2D(256 ,3 ,activation='relu',padding='same'))model.add(Conv2D(256 ,3 ,activation='relu',padding='same'))model.add(MaxPooling2D(pool_size=2))model.add(Flatten())model.add(Dense(256, activation='relu'))model.add(Dropout(0.5))model.add(Dense(256, activation='relu'))model.add(Dropout(0.5))model.add(Dense(num_classes, activation='softmax'))model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])model.summary()

训练模型

history = model.fit(X,train_y, validation_data=(test_X, test_y),epochs=20,batch_size=100,verbose=True)score = model.evaluate(test_X, test_y, verbose=0)print("Large CNN Error: %.2f%%" %(100-score[1]*100))

 

转载地址:http://kshv.baihongyu.com/

你可能感兴趣的文章
Mysql当前列的值等于上一行的值累加前一列的值
查看>>
MySQL当查询的时候有多个结果,但需要返回一条的情况用GROUP_CONCAT拼接
查看>>
MySQL必知必会(组合Where子句,Not和In操作符)
查看>>
MySQL必知必会总结笔记
查看>>
MySQL快速入门
查看>>
MySQL快速入门——库的操作
查看>>
mysql快速复制一张表的内容,并添加新内容到另一张表中
查看>>
mysql快速查询表的结构和注释,字段等信息
查看>>
mysql怎么删除临时表里的数据_MySQL中关于临时表的一些基本使用方法
查看>>
mysql性能优化
查看>>
mysql性能优化学习笔记-存储引擎
查看>>
MySQL性能优化必备25条
查看>>
Mysql性能优化(1):SQL的执行过程
查看>>
Mysql性能优化(2):数据库索引
查看>>
Mysql性能优化(3):分析执行计划
查看>>
Mysql性能优化(4):优化的注意事项
查看>>
Mysql性能优化(5):主从同步原理与实现
查看>>
Mysql性能优化(6):读写分离
查看>>
MySQL性能优化(八)--
查看>>
MySQL性能测试及调优中的死锁处理方法
查看>>